2018年8月24日 星期五

[CUDA] 多重讀取與寫入的互斥問題

如果 kernel 執行時, 不同的 thread 對同一個變數進行讀取與寫入, 會發生甚麼事呢? 當不同thread被同時執行時, 同時去讀取同一個變數, 得到相同的值, 如果把此值運算後同時又寫回去, 最後的值就不一定是多少了, 以下程式開啟 BlockSize*ThreadSize 個 thread 去執行把 global memory 陣列變數加1的動作,程式碼如下 :

[CUDA] 測量效能


這裡使用兩種方式:
  1. 使用 windows的 PerformanceCounter, 只要 include <Windows.h> 即可使用
  2. 使用 cudaEvent
arraySize受限於host與gpu的記憶體容量, 可自行調整測試, repeat為重複執行次數. 如果在 main() 中重複呼叫 addWithCuda(), 會因為記憶體搬移花費大量時間, 反而可能比CPU還慢, 因此直接在 addWithCuda() 中重複呼叫 kernel去計算. 資料陣列可宣告於 globalㄝ如果放在local 最好宣告 static, 否則  arraySize 太大會造成 stack overflow.

[CUDA] 檢視 CUDA 性能


CudaInfo(): 列印Cuda相關能力

[CUDA] host memory與device memory


以下程式碼展示 host memory與device memory之間的關係, 變數命名 host 開頭表示是在 host memory, dev 開頭表示是在 device memory. 一開始初始化 host_a[], 然後用cudaMemcpy() 複製至 dev_a[], 平行呼叫 kernel 函數 shared() 後, 將 dev_a[] 複製至 x[], x是shared memory, 可在同一個 block 內的所有 thread 使用.


MR與實際地震的關係

RMT的MR值只看相關性, 與震動的實際絕對大小無關, 小震動也有可能造成高MR值. 照原本RMT的設計理念, 地震發生MR應該會升高, 如果把地震發生看成一個變數, MR高低看成一個變數, 組合起來有4種狀況:
1. 有地震, MR高 : 這個RMT已經解決了
2. 有地震, MR低 : 目前觀察, 小區域小規模地震時, 震波沒有傳到另一個測站, 容易產生這個現象, 經驗上大概規模4以上就比較少這個問題, 規模3.5偶而還是會看到
3. 沒地震, MR低 : 這應該就是正常的雜訊
4. 沒地震, MR高 : 可能是真的有小震, 但因為震幅過小但是有相關性, 也可能是隨機雜訊剛好有相關性, 這可以用時間排除, 真是隨機訊號的話, 相關性只會出現在瞬間, 不會持續達幾十分鐘之久, 這樣並不合理

[CUDA] 平行處理基礎 : Block 與 Thread

在 CUDA 中, 以軟體觀點來看, 一個 grid 由許多 block 組成, 一個 block 由許多 thread 組成, 每一個 kernel 函數執行時, 可以從 threadIdx 與 blockIdx 取得編號, 但是並沒有 gridIdx, 這表示每一個平行處理的執行, 是在同一個 grid 下進行. BlockSize 與 ThreadSize 的數量受限於 GPU 的硬體架構, 平行處理的函數呼叫語法是:

2018年8月23日 星期四

在 C# 呼叫 CUDA 的方法



最近開始研究CUDA,準備做演算法加速, 因此生出這篇筆記。因  CUDA 是叫用 nvcc 進行編譯,CUDA 函數無法被C# 這種 managed code 直接呼叫,在同一個 CUDA 專案中只能用CC++來呼叫 CUDA,因此必須在 CUDA 專案中加一個 C/C++wrapper 函數,將 CUDA 專案包裝成 C 語言的DLL檔,然後在 C# 中用 DllImport 呼叫 C 函式來轉給 CUDA 計算。以下實作以 Visual Studio 2017 Community CUDA 9.2 SDK為例,完整程式碼在https://github.com/ghostyguo/CudaDotNet